Co²⁺: MgAl₂O₄ 可飽和吸収体を用いた青色 InGaN 半導体レーザ励起

Pr³⁺: YLF レーザの受動 Q スイッチ動作

Passively Q-switching of InGaN laser diode pumped Pr3+: YLF laser using Co2+: MgAl₂O₄

藤田 将吾 (M1) Shogo Fujita

Abstract

We demonstrated InGaN LD pumped passively Qswitched Pr³⁺:YLF lasers at 523, 607 and 640 nm with a Co²⁺:MALO saturable absorber. At 640 nm, we obtained the highest pulse energy of 33.5 µJ with a pulse width of 30.9 ns at a repetition rate of 64.0 kHz. Furthermore, UV pulse at 261 and 320 nm was obtained by intracavity frequency doubling.

1. はじめに

プラセオジムイオン(Pr³⁺)ドープ結晶は可視域に多 くの発光遷移を持ち[1], 簡易なセットアップで可 視及び紫外光の発生が可能となる. さらに近年, 受 動 Q スイッチ動作及びモード同期動作に向け,可 視域で利用可能な可飽和吸収体の探索が進められ ている. その中でも Co²⁺:MgAl₂O₄(MALO)は赤, 橙 域に加え、Cr4+:YAG では実現できない緑の波長帯 で可飽和吸収特性を示しており、既に Pr³⁺:YLF を 用いた受動 Q スイッチ動作が 523, 607, 640 nm に おいて達成されている[2]. 今回, 我々は励起源とし て出力約 5.0 W の青色 InGaN 半導体レーザを最大 4 台用い, Co²⁺:MALO 可飽和吸収体を用いた Pr³⁺:YLF 受動 Q スイッチレーザの高出力化を行っ た. また, 共振器2倍波発生により, 紫外パルスの 発生実験を行った. さらに、レート方程式モデルを 構築し,実験値との比較を行った.

2. Pr³⁺:YLF レーザ受動 Q スイッチ動作

今回我々は Fig.1 に示す実験セットアップを用い, 波長 523,607,640 nm における Pr³⁺:YLF レーザ連続 波発振実験を行った.

Fig.1 Experimental setup of passively Q-switched Pr^{3+} :YLF laser.

励起光として、出力約 5 W の青色 LD を最大 4 台 用いた. Pr^{3+} :YLF 結晶は吸収ピークを 444 nm (E//c) と 442 nm (E⊥c) に持っており、この 2 つの波長 で発振する LD をそれぞれ 2 台ずつ用い、偏光重畳 されて 0.3 at.%、12 mm の Pr^{3+} :YLF に吸収される. 可 飽 和 吸 収 体 と し て は 、 透 過 率 の 異 な る Co^{2+} :MALO を 2 つ用いた. 2 つのサンプルの透過 率は Table 1 にまとめる.

さらに, 光子密度**φ**、利得媒質の反転分布密度*ΔN*, 可飽和吸収体の基底準位密度*ngs*の3つのパラメー タのレート方程式を解くことで, *Q*スイッチ動作の 数値モデルを構築した.

$$\frac{d\phi}{dt} = \frac{c\phi}{l_c} \{\sigma_{st} \Delta N l_g - \sigma_{gs} n_{gs} l_{SA} - \sigma_{es} (n_{tot} - n_{gs}) l_{SA} \} - \frac{\phi}{\tau_c}$$
(1)

$$\frac{d\Delta N}{dt} = -c\phi\sigma_{st}\Delta N - \frac{\Delta N}{\tau_f} + \frac{N_{tot} - \Delta N}{N_{tot}} \frac{\eta_Q \eta_{St} \eta_m P_{abs}}{h v_L V}$$
(2)

$$\frac{dn_{gs}}{dt} = -\sigma_{gs} c\phi n_{gs} \frac{A_g}{A_{SA}} + \frac{n_{tot} - n_{gs}}{\tau_{SA}}$$
(3)

Figure 2 に, 640 nm における *Q* スイッチ特性の吸 収パワーに対する変化を, Table 1 に得られた *Q* ス イッチ特性をまとめる.

Fig. 2 (a) Average power, (b) pulse width and repetition frequency of Q-switched Pr^{3+} :YLF laser with Co²⁺:MALO (Sample 1) and output coupler of 21.4% at 640 nm. Dashed lines are results of numerical simulation.

波長 640 nm、607 nm では、ともに Sample 1 を用い た時の方が得られた平均パワーは低いものの, パル

ス幅が短く, 607 及び 640 nm に対してそれぞれ 762 W, 1084 W と高いピークパワーを達成することが できた. これは、Table 1 に示すように Sample 1 の 方が励起準位吸収が大きいために共振器内損失が 大きくなるが,透過率の変調度が高いためにパルス 幅を短くすることができたためである.また,523 nm では他の2つの波長に比べてピークパワーは低 いが、これは熱レンズ収差の影響を抑えるために Pr3+:YLF内での共振器モード径を小さくし,モード 径を小さくマッチング効率が低下したことや, Co²⁺:MALO の透過率変調度が低いことに起因する. しかし、Cr²⁺:YAG では得られない緑の波長帯で受 動 Q スイッチが達成でき,2 倍波発生によって深紫 外パルスの発生へとつなげることができる.また, Figure 2 に示すように繰り返し周波数は吸収パワー が~6 W 以上で頭打ちになる現象が見られ、数値解 析と実験値に大きな乖離が生じた. 詳細に繰り返し 周波数を見積もるには、さらなる研究が必要である.

Wavelength(nm)	523	607		640		
Crystal	Sample1	Sample1	Sample2	Sample1	Sample2	Sample2
Effective initial transmission T_0 (%)	97.5	83.6	91.4	84.9	92.1	
Effective saturated transmission T_{sat} (%)	-	97.5	98.7	91.5	95.6	
Transmission of OC (%)	2.7	11.4	11.4	21.4	9.1	21.4
Maximum absorbed pump power (W)	5.3	10.2	10.2	10.9	10.9	10.9
Average power (W)	0.3	1.1	1.5	2.1	2.4	2.7
Slope efficiency (%)	10.3	14.3	17.3	21.5	25.3	27.9
Threshold pump power (W)	2.1	2.4	1.1	1.5	0.7	1.1
Pulse width (ns)	250.1	40.3	54.1	30.9	45.3	43.6
Repetition frequency (kHz)	50.1	35.5	59.4	64	80.7	111.3
Pulse energy (µJ)	6.6	30.7	25.6	33.5	29.9	24.3
Peak power (W)	27	762	473	1084	662	557
M^2 (vertical × horizontal)	2.5×2.8	2.4×2.7	2.4×2.9	1.1×1.3	2.6×2.8	1.9×1.8

Table 1 Summary of characteristics of passively Q-switched Pr³⁺:YLF laser at 523, 607 and 640 nm.

3. 共振器内 2 倍波発生による UV パルス発 生

次に,我々は Figure 3 に示す Z 型共振器を用いて、 共振器内 2 倍波発生による 261 及び 320 nm の紫外 パルスの発生実験を行った.

Fig. 3 Experimental setup of intracavity frequency doubling of passively Q-switched Pr³⁺:YLF laser.

用いた非線形光学結晶は、523 nm から 261 nm への 波長変換には 7 mm の β -BaB₂O₄ (BBO) Type I 結晶 (φ = 48.9°) を, 640 nm から 320 nm への波長変換 には 8 mm の LiB₃O₅(LBO) Type I 結晶 (φ = 53.6°) を用いた。

Figure 4 に 320 nm の Q スイッチ特性の吸収パワーに対する変化を、Table 2 に得られた Q スイッチ特性をまとめる。

Fig. 4 (a) Average power, (b) pulse width and repetition frequency of UV pulse at 320 nm.

Table 5 Summary of characteristics of UV pulses at 261.5 and 320 nm.

Wavelength(nm)	261.5	320
Transmission of OC (%)	78.1	83.7
Maximum absorbed pump power (W)	5.3	10.9
Average power (mW)	13	454
Slope efficiency (%)	0.4	4.6
Threshold pump power (W)	2.3	1.5
Pulse width (ns)	356.3	63.3
Repetition frequency (kHz)	82.0	64.6
Pulse energy (µJ)	0.2	7.0
Peak power (W)	0.4	111.1
M^2 (vertical × horizontal)	-	1.3×1.4

今回、Pr³⁺:YLF レーザ受動 Q スイッチ動作を用い て初めて 261 nm の深紫外パルスの発生を行った. 320 nm と比較し、基本波である 523 nm のパルスエ ネルギー, ピークパワーが低いために変換効率が低 い.しかし,励起密度を下げ,熱破壊を防いだうえ でさらに高出力化が実現できれば,Nd³⁺レーザの波 長変換と比べて簡易で高効率なセットアップでさ らに高出力な深紫外パルスの発生が可能となる。

References

- C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, "Out of the blue: semiconductor laser pumped visible rareearth doped lasers," Laser Photon. Rev. 21, 1–21 (2016).
- [2] M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, "Passively Q-switched Pr:YLF laser with a Co²⁺:MgAl₂O₄ saturable absorber," Optics Lett. **42**, 4687–4690 (2017)